STRUCTURE AND CONFORMATION OF HETEROCYCLES III . ANGULARLY AND PERIPHERALLY SUBSTITUTED CIS-1,4,5,8-TETRAOXADECALINS. Yehuda Auerbach, 2a Milon Sprecher 2b and Benzion Fuchs

Institute of Chemistry, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel.
(Received in UK 16 November 1970; accepted for publication 25 November 1970)

In previous communications (1,3) we have described approaches for structural (1) and dynamic conformational analysis (3) of the interesting <u>cis-1</u>,4,5,8-tetraoxadecalin system (4). We now wish to present results of the application of these procedures to mono-angularly and peripherally substituted derivatives. A new method for synthesis of the latter has been developed.

The approach to the evaluation of barriers to inversion of the bicyclic system under scrutiny involves temperature dependent NMR studies of protons in the range between high-and nil exchange. In this context, one well-known procedure (5) consists in starting with two interconverting substituents and slowing down the ring inversion until one reaches frozen conformations. The second, less conventional method relies on having a prochiral substituent in the angular position. This center becomes observably chiral when the molecule assumes a <u>fixed dissymetric conformation</u> at low enough a temperature and the protons on the angular substituents become magnetically non-equivalent (3,6). Making use of well established rate study techniques, one may then derive the activation parameters for conformational interconversion (5).

Following the successful application of the second of these procedures to the 9,10-di(bromomethyl) derivative I (3), it was of interest to investigate some mono-angularly substituted derivatives, especially in view of somewhat puzzling results recorded for the decalin analogs (5a,d, 6c).

$$I : R=R'=CH_2Br$$

$$II : R= -Q-CMe_2H; R'=H. 100$$

$$III : R= -Q-CMe_2D; R'=H. 100$$

$$IV : R= -Q-CMe_2Br; R'=H 99$$

$$V : R= -CH_2-Ph; R'=H. 75$$

A first such attempted investigation of compounds II-IV(7) was unproductive since no appreciable line broadening, let alone splitting of the cumyl methyl signals was detected on cooling down to -100° C. The methyl groups are apparently too remote from the chiral center, for their protons to show magnetic non-equivalency. However, the study of 9-benzyl-cis-1,4,5,8-tetraoxadecalin V was rewarding. Its room temperature NMR spectrum (100 MHz; Acetone-d₆) exhibits a sharp singlet at τ 6.94 due to the benzylic protons. On cooling down to -90°C one registers broadening, splitting and finally an AB system, with $\Delta\delta_A$ =61 Hz and $\Delta\delta_A$ =14.7 Hz (8a), with the coalescence temperature, Tc= -78°C. The

2.

rate of inversion at Tc is approximated from $k_c = \pi \left(\Delta \delta^2 + 6 J^2 \right)^{\frac{1}{2}} / \sqrt{2} = 79 \text{ sec}^{-1}$ (i.e. without intrinsic line-width correction) (5,9) and hence $\Delta G_{195}^{+} = 9.5 \text{ kcal/mole}$ (8b).

We now turn to peripherally substituted 1,4,5,8-tetraoxadecalins. The only such reported derivatives are, to our knowledge, cis-1,4,5,8-tetraoxadecalin-trans-2,3-dicarboxylic acid and its dimethyl and diethyl esters (10). The reason is apparently that the standard synthetic procedures for securing the system are under thermodynamic control viz. 1,2-diketones + α -glycols under acid catalysis or 2,3-di-chlorodioxanes + α -glycols with hydrogen chloride evolution (1,10 and references therein). Thus, derivatives of relatively high energy content are not likely to form in these processes (11). Preparative methods which obviate conditions of thermodynamic control were therefore sought.

While attempted condensations of dichlorodioxane with alkali salts of α -glycols failed, the use of their bis-trimethylsilyl derivatives led to the desired products. The scope of this new method is currently being explored and hopefully it will provide otherwise unattainable compounds in the series.

We were able, so far, to prepare in moderate yields, the peripherally substituted derivatives VIIIa-e (7b). The new cis-dicarbomethoxy derivative VIIIe was also prepared by a modification of Boeseken's method (10) viz., direct condensation of VI and meso-dimethyltartarate with continuous entrainment of the HCl formed in a stream of nitrogen. Since VIIIe is thus shown to be formed also in a thermodynamically controlled process, it is tentatively assigned the more stable anti-configuration.

Both cis-and trans-dichlorodioxanes give similar results in the above reaction indicating that it probably proceeds by an S_N^1 type mechanism. On the other hand, the glycols as well as their bis-trimethylsilyl derivatives react with complete retention of configuration. This was confirmed by chemical corelation of the dicarbomethoxy derivative VIIIc with the dimethyl derivative VIIId via the conversions:

$$\begin{array}{c} 0 \\ 0 \\ 0 \\ CH_2X \\ cCH_2X \\ cCH$$

The esters VIIIc, e were subjected to dynamic conformational analysis. VIIIc exhibited an unchanged NMR spectrum between -80° and +150° C_ics expected, since the disquatorial conformation should be stable in this temperature range. Not so with the axial-equatorial isomer VIIIe, where conformational interconversion occurs at rates amenable to variable temperature NMR study (100 MHz, Acetone-d₆/Pyridine). Thus the carbomethoxy singlet at τ 6.35 broaders on cooling and eventually splits with $\Delta \delta = 6$ Hz at -96°C. Coalescence occurs at -80°C. The rate constant of exchange at T_c is evaluated from $k_c = \pi \Delta \delta / \sqrt{2}$ and leads to ΔG_{103}^{\pm} 10.0 kcal/mole (8b).

The conformational analysis of heterocyclic compounds has been quite extensively documented in recent years (13), including the dynamic aspects (5a, 14). Nevertheless, surprisingly little is known in this context, on hetero-bicyclic and polycyclic systems. We can now conclude that a consistent AG values for the picture for the inversion barriers in cis-1,4,5,8-tetraoxadecalins obtains. The compounds V and VIIIe are lower than that of the angularly disubstituted derivative I (3), ence is, though, small and can be understood in terms of alleviation of strenuous eclipsing of angular substituents at the peak (transition state) in the inversion profile of the system (15). Furthermore, the free energies of activation are lower than those recorded for a variety of decalins (5a,d;6c). order explanation of this observation is suggested by the fact that the torsional barriers of C-O bonds are lower than those of C-C bonds in comparable systems (13a). However, additional factors, such as partial mitigation of 1,3-diaxial interactions and the anomeric effect undoubtedly play an important role but will be discussed in the full paper.

A:knowledgement. It is a pleasure to acknowledge a stimulating discussion with Professor A.T. Balaban.

REFERENCES and FOOTNOTES

- 1. a. Part II: B. Fuchs, Tetrahedron Letters, 1747 (1970).
 - b. Presented in part at the 40th meeting of the Israel Chemical Society, Haifa, 1970.
- 2. a. Part of a Ph.D. Thesis to be submitted by Y.A. to the Senate of the Tel-Aviv University.
 - b. On leave of absence from Bar Han University, Israel.
- 3. B. Fuchs, Tetrahedron Letters, 3571 (1969); Erratum: Temperature recalibration showed the coalescence of the NMR signal of cis-9, 10-di (bromomethyl)-1,4,5,8-tetraoxadecalin I, to occur at -47°C (60 MHz). Also the enthalpy and entropy of activation (for ring flipping) should read ΔG₂₂₆ 11.2±0.9 kcal/mole, ΔH[‡]9.0±0.9 kcal/mole and ΔS[‡]-9±4 e.u.
- 4. Only cis fused derivatives of this bicyclic system are known so far. For leading references cf. (1a,3).
- 5. a. W.A. Thomas, "Ann. Rev. NMR Spectroscopy", 1, 43 (1967) and references cited therein.
 - b. C.S. Johnson, Jr., Adv. Magn. Resonance, 1, 33 (1965).
 - c. G. Binsch in "Topics in Stereochemistry" E.L. Eliel and N.L. Allinger, Editors, Vol.3, p.97, Interscience, 1968
 - d. J.T. Gerig and J.D. Robers, J. Am. Chem. Soc. 88, 2791 (1966).
- 6. a. M. Van Gorkom and G.E. Hall, Quart. Rev. 14, (1968).
 - b. R.E. Lyle and J.J. Thomas, Tetrahedron Letters, 897 (1969).
 - c. J. Altman, H. Gilboa, D. Ginzburg and A. Loewenstein, ibid., 1329 (1967).
- 7. a. Compounds II and V were prepared by the classical condensation of the corresponding ketoaldehydes with ethylene glycol under acid catalysis. II was brominated to III which was further reduced to IV by LiAID₄.
 - b. Satisfactory elemental analyses as well as spectral data were secured. The latter corroborate in full the previously established correlations (la).
- a. The chemical shift lacks high accuracy since the low field branch of the AB pattern partly overlaps the peripheral proton resonances.
 - b. A detailed analysis for evaluation of ΔH^{\ddagger} and ΔS^{\ddagger} will be reported in the full paper.
- 9. R.J. Kurland, M.B. Rubin and W.B. Wise, J. Chem. Phys. 40, 2426 (1964).
- 10. a. J. Boeseken, F. Tellegen and P. Cohen-Henriquez, J. Am. Chem. Soc. 55, 1284 (1933).
 - b. R. Bramley, L.A. Cort and R.G. Pearson, J. Chem. Soc. (C) 1213, (1968).
- 11. Cf. for example the condensation of benzil with ethylenglycol in which only the bi(dioxolan-2-yl) derivative is formed (Ja and references therein).
- 12. a. L. Birkofer and A. Ritter, Angew. Chem. Internat. Ed. 4, 417 (1965).
 - b. L. Birkofer, A. Ritter and J. Schramm, Chem. Ber. 95, 426 (1926).
- 13. a. F.G. Riddell, Quart. Rev., 364 (1967).
 - b. E.L. Eliel, Acc. Chem. Res., 3, 1 (1970).
 - c. C. Romers, C. Altona, H.R. Buys and E. Havinga "Topics in Stereochemistry", E.L. Eliel and N.L. Allinger, Editors, Vol. 4, p. 39.
- 14. R.K. Harris and R.A. Spragg, J. Chem. Soc. (B), 684 (1968).
- 15. For a pertinent discussion on this aspect of. (5d).